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The concept of metamaterials has 
already blurred the boundary 
between a material’s properties and its 

structures, architectures and mechanisms. 
But studies to date have focused on 
mechanical metamaterials that are 
scalable — in the sense that their effective 
properties do not depend on the number of 
unit cells. Now, writing in Nature Physics, 
Corentin Coulais and co-workers1 have 
gone one step further to show that some 
metamaterials are characterized by a length 
scale, leading to an anomalous relationship 
between a material’s properties and its size.

Using quasi-static experiments on one-
dimensional chains comprising pairs of 
hinged ridged squares (Fig. 1), Coulais et al. 
showed that the effective moduli change 
with the number of unit cells along the 
chain. This behaviour indicates the presence 
of a characteristic length scale and leads 
to a non-monotonous dependence of the 
chain’s Hookean spring constant on the 
number of unit cells with a superimposed 
even–odd oscillation. Usually the spring 
constant is simply inversely proportional to 
this number.

To bring their results into context, 
let us start by briefly revisiting ordinary 
materials under stationary conditions. The 
size of an atom or a crystalline unit cell is 
on the order of a few ångströms. This is 
more than a hundred million times smaller 
than your mobile phone. As a result, the 
unit cell can be seen as an infinitesimally 
small volume for most practical purposes. 
This view is the basis of textbook (that 
is, Cauchy) continuum mechanics2 and 
has many important consequences. For 
example, the elastic parameters of the 
material, such as the compressibility or 
the shear modulus, do not depend on 
the overall material size. Clearly, the 
behaviour changes quantitatively — and 
possibly even qualitatively — if the 
number of atoms within the material 
decreases to mere thousands, hundreds or 
tens. However, this limit brings us away 
from materials science into the realm of 
macromolecular chemistry.

In metamaterials, the unit cell of the 
metamaterial is man-made. It is custom 
designed and can have any size from 
nanometres to metres. Therefore, the unit 
cell can generally not be treated as being 
infinitesimally small. In some ways, this 
aspect was totally obvious from the start 
of the metamaterials field around 17 years 

ago3,4. However, it is usually considered a 
nuisance rather than an opportunity. The 
community has championed systems in 
which the effective material properties 
stay the same if the number of unit cells 
is changed — perhaps simply because the 
old habits of materials science die hard. 
In retrospect, this attitude has curbed 
additional design opportunities and the 
degrees of freedom that come about when 
considering metamaterials that are not 
scalable in this sense.

Through their experiments, Coulais et al. 
were able to show that this behaviour 
is connected to a characteristic length 
scale — in fact, they found two. For sizes 
much larger than this length scale, ordinary 
behaviour is recovered. This length scale is, 
of course, proportional to the size of the unit 
cell, but the pre-factor can be tailored by the 
architectural details of the unit cell. In their 
case, rotation-based deformations of the 
elements within the metamaterial unit cell 
determine this length scale.

Interestingly, they were able to derive an 
analytical expression for its scaling versus 
the geometrical parameters. It diverges 
if the connections between the squares 
can be considered ideal hinges. As the 
two hinged squares within their unit cell 
rotate in opposite directions, no overall 
(macroscopic) rotation of the chain results. 
All of these aspects are absent in ordinary 
Cauchy continuum mechanics, where the 
unit cell is treated as an infinitesimally small 
volume element.

The work raises a number of scientific 
questions and opens up avenues for further 
research. First, can one map the observed 
behaviour onto any kind of generalized 
effective-medium description? This question 
arises naturally when reading the extensive 
theoretical literature on micromorphic 
elasticity, summarized in the seminal 
textbook by A. Cemal Eringen5. Therein, 
the ordinary rank-four elasticity tensor is 
replaced by up to nine tensors. In addition 
to displacements, these tensors describe how 
rotations and deformations of the material 
microstructure — which can be periodic, but 
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Figure 1 | Non-scalability in metamaterials. 
A unit cell composed of four hinged squares 
(highlighted in red) forms a two-dimensional 
mechanical metamaterial with N unit cells along 
the vertical direction and M along the horizontal. 
Shown are examples with N = 6 (left) and N = 3 
(right) at fixed M = 3. The metamaterial samples 
hang on the ceiling and are subject to vertical 
gravitational forces via the weights at the bottom. 
If one bisects the length of an ordinary Cauchy-
elastic material (not depicted) and doubles the 
masses at the bottom, the overall displacement 
u stays the same — and the material is scalable. 
The behaviour of the metamaterial is distinct: 
the displacement for six unit cells, u6, is much 
smaller than that for three, u3. This means that the 
metamaterial stiffness increases with N — and the 
metamaterial is not scalable. Scalability, however, 
is recovered for sufficiently large values of N, 
introducing a characteristic length scale.
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need not be — are connected to forces and 
torques. The tensor elements also directly 
determine the characteristic length scale.

This mapping onto generalized effective-
medium parameters has, for example, been 
performed for human bone6, suggesting 
that the effects of non-scalability are 
important in everyday life. It could well 
be successful for the present experiments 
too. Otherwise, a devil’s advocate might 
argue that the properties Coulais et al. have 
observed are not effective metamaterial 
properties but rather properties of a complex 
structure made out of an ordinary elastic 
constituent material.

The study also prompts one to ask what 
the upper limits for the characteristic length 
scale might be in practice for any kind of 
mechanical metamaterial. This question 

is relevant because it would be even more 
striking if one could realize experimentally 
significant deviations from scalability in 
metamaterials with hundreds or thousands 
of unit cells — instead of order ten — along 
any one direction.

Finally, one wonders whether the lattice 
constants of millimetre order probed in the 
study could be drastically miniaturized to the 
microscale. To laymen, such microstructured 
metamaterials7–9 would no longer seem 
to be mere toy models, but rather widely 
appreciated as real-world materials.� ❐
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