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Interparticle forces in granular media form an inhomogeneous
distribution of filamentary force chains. Understanding such
forces and their spatial correlations, specifically in response to
forces at the system boundaries1,2, represents a fundamental goal
of granular mechanics. The problem is of relevance to civil
engineering, geophysics and physics3–5, being important for the
understanding of jamming, shear-induced yielding and mechan-
ical response. Here we report measurements of the normal and
tangential grain-scale forces inside a two-dimensional system of
photoelastic disks that are subject to pure shear and isotropic
compression. Various statistical measures show the underlying
differences between these two stress states. These differences
appear in the distributions of normal forces (which are more
rounded for compression than shear), although not in the distri-
butions of tangential forces (which are exponential in both cases).
Sheared systems show anisotropy in the distributions of both the
contact network and the contact forces. Anisotropy also occurs in
the spatial correlations of forces, which provide a quantitative
replacement for the idea of force chains. Sheared systems have
long-range correlations in the direction of force chains, whereas
isotropically compressed systems have short-range correlations
regardless of the direction.

Under the action of external stresses, grains in dry granular
materials form an inhomogeneous contact network, which carries
most of the external load by way of force chains. The resultant
network is different for shearing than for isotropic compression and
is history-dependent owing to friction. Previous experiments6–8 have
reported an exponential tail for the distribution of contact force
magnitudes. This tail can be successfully predicted by many
models9–11 with radically different mathematical structures and
microscopic assumptions. Testing the validity of these models
requires that the predicted force distributions be verified by measure-
ments of full vectorial contact forces in the bulk of the sample.
It is also important to find other distinguishing signatures character-
izing the nature of force chain networks under different boundary
conditions—an important goal of the present work.

In the following experiments, we visualize internal stresses in each
grain and by solving the full inverse photoelastic problem12,13 for
each disk, we obtain normal and tangential force components for
each contact between disks. We use this microscopic contact force
information to investigate differences in the distributions of contact
forces, and the force chain structure, arising from two different types
of loads: pure shear and isotropic compression. We find that forces
have distinctive angular distributions and spatial correlations
depending on the macroscopic preparation. In particular, forces
have long-range correlations in the direction of force chains for
sheared systems, but are correlated over a much shorter range,
regardless of direction, for isotropically compressed systems.

Our experimental system is a two-dimensional (2D) array of
approximately 2,500 bidisperse photoelastic (birefringent under

strain) disks subjected to pure shear and isotropic compression.
Figure 1 shows a diagram of the experimental set-up and some
typical images; details of the set-up and the experimental procedure
are described in Fig. 1 legend. Although previous approaches14–17

have obtained contact forces using photoelastic techniques, they were
neither automated nor suitable for a large enough number of
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Figure 1 | Experimental set-up and representative data. a, Schematic
diagram of the biaxial test cell. The biaxial test apparatus rests horizontally
on a sheet of Plexiglas and is used to impart pure shear and isotropic
compression. Motorized linear slides move two walls of the biaxial cell
precisely and independently with a velocity of 0.024 cm s21. The system is
illuminated from below and a high-resolution camera captures digital
images from above. Each image captures roughly 250 particles located
around the centre of the cell, roughly 10% of the total number of particles.
The system is imaged through crossed circular polarizers. For each type of
load, incremental deformations are applied in a quasi-static manner,
beginning with a stress-free state. The sheared states are created by
compressing in one direction and expanding by an equal amount in the
other direction, with strains (1xx ¼ 1yy ¼ jDL/Lj) ranging from 0 to 0.042.
L (,40 cm) is the initial system length in the x or y direction. Isotropically
compressed states are created by compressing in both directions with strains
ranging from 0 to 0.016. The particles used in the experiment are either
0.8 cm or 0.9 cm in diameter and 0.6 cm in height, with a Young’s modulus of
4 MPa and a friction coefficient of 0.8. The number ratio of small to large
disks is 4:1. b, Typical system size images for an isotropically compressed
state (top) and a sheared state (bottom). c, An example of the observed stress
pattern for a single disk at the resolution (,0.01 cm per pixel) used in these
studies.
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particles to generate statistical information. Measurements of contact
forces in our method are performed in a completely automated
fashion for all disks except those at the boundary of the image.

Our algorithm for extracting contact forces (T.S.M. and R.P.B.,
manuscript in preparation) involves fitting the observed photoelastic
pattern inside each disk to the plane elasticity solution18 for the
stresses inside a disk, treating the force components as fitting
parameters. In effect we solve the 2D isotropic elasticity equations
for each disk, assuming a perfect line contact between three-
dimensional (3D) cylinders. As long as the deformations are not
too large, as is the case in our experiments, the 2D solution is a good
approximation. As the experimental image is a highly nonlinear

function of the contact forces with the possibility of multiple
solutions, we perform a nonlinear least-squares fit19 using about
500 data points for each disk. The best-fit parameter values are our
measured contact forces.

For each realization, we compare the image computed using the
best-fit contact forces and the original experimental image. Figure 2
shows two such realizations. The computed images (Fig. 2b, d) agree
well with the experimental images (Fig. 2a, c) in terms of capturing
the broad features of force chains. The error estimates found by
calibration and by computing the average difference of pairs of
forces at each contact are around 10% for low forces and 5% for
mean-to-high forces. The agreement between the observed stress
field inside each disk and the computed stress field validates the use
of the 2D approximation. The data presented below (Figs 3 and 4) are
obtained from five realizations for each stress state. We use the
contact forces obtained by the procedure outlined above to investi-
gate the distributions of contact forces and the anisotropy induced by
external loads.

Figure 3 shows the distributions of the normal force, the tangential
force and the ratio of tangential to normal force, for a sheared system
and an isotropically compressed system. The normal and the tan-
gential forces are normalized by the mean normal force. The normal
force distribution for the sheared system (Fig. 3a) has a peak around
the mean, a roughly exponential tail and a dip towards zero for forces
lower than the mean. In contrast, for isotropically compressed
systems, the normal force distribution (Fig. 3c) dips towards zero
for forces below the mean, is broad around the mean, and decays
faster for large forces compared to the sheared system. The tangential
force distributions have a nearly exponential tail for forces larger than
the mean for both the sheared (Fig. 3a) and the isotropically
compressed system (Fig. 3c). The mean tangential forces are an
order of magnitude smaller than the mean normal forces: a feature
responsible for a smaller range of maximum tangential forces.

In order to investigate the role of friction in the system, we study
the distribution of the variable S ¼ jF tj/mFn, where m is the static
friction coefficient, F t is the tangential force, and Fn is the normal
force. The variable S gives information about how far away a contact
is from the Coulomb failure criterion. If a contact is at the Coulomb
failure criterion, S ¼ 1. Figure 3b and d show the distributions of S
for the sheared and the isotropically compressed system, respectively.
For both types of loading conditions, the distribution of S shows that
most of the contacts are much below the Coulomb failure condition.

Figure 2 | Comparison of experimental images (a, c) and computed images
(b, d). Top pair, a low-force sheared state. Bottom pair, a high-stress
isotropically compressed state. Very weak forces are not resolved owing to a
force threshold involved in the algorithm. Forces lower than 10% of the
mean force are not computed.

Figure 3 | Probability distributions of the normal forces, the
tangential forces, and themobilized friction, for the sheared and
the isotropically compressed systems. The deformation
(1xx ¼ 1yy ¼ jDL/Lj) for isotropically compressed and sheared
systems is 0.016 and 0.042, respectively. In a and c, the forces are
normalized by the mean normal force, kFnl. a, Probability
distributions of the normal (Fn) and the tangential (F t) forces for
the sheared system on a semi-log scale. b, Probability distribution
of S ¼ jF tj/mFn for the sheared system, normalized by its
maximum value, Pmax(S). c, Probability distributions of the
normal and the tangential forces for the isotropically
compressed system on a semi-log scale. d, Probability distribution
of S ¼ jF tj/mFn for the isotropically compressed system,
normalized by its maximum value.
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Numerical simulations of 3D granular systems in a silo geometry20

report similar results for the distributions of the normal forces and
the tangential forces in sheared systems. The distributions of the
variable S (also called the mobilized friction) in the interior of the
system reported in ref. 21 are qualitatively similar to our results for
the sheared systems. The similarity in the distributions of the
mobilized friction for the sheared and the isotropically compressed
systems could be due to the fact that our sheared system is well below
the shear yield limit and that our distributions are obtained from
regions far away from the walls.

Our next focus of investigation is the shear-induced anisotropy.
The anisotropy induced by an external load has two distinct effects;
one, a purely geometric effect, is to introduce anisotropy in the
contact network, and the other, a mechanical effect, is to develop an
anisotropic force chain network and alter the stress distribution in
the system. In order to investigate the geometric anisotropy, we study
the distribution of contact angles for contacts carrying forces larger
than the mean force. The sheared system (Fig. 4a) shows a strongly
anisotropic distribution, with a large number of contacts aligned
along the direction of the majority of force chains and a small
number of contacts aligned in the direction perpendicular to it. In
contrast, the isotropically compressed system exhibits a distribution
with a six-fold symmetry (Fig. 4b), indicating that the contacts
are distributed evenly along these directions. A simple measure
characterizing the mechanical anisotropy is the angular variation
of the mean normal force as shown in Fig. 4c and d, for the sheared
and the isotropically compressed system, respectively. For the

sheared system, the mean normal force shows a periodic variation
with peaks roughly in the direction of force chains. The variation can
be adequately described by a second-order Fourier expansion
(Fig. 4c), a result consistent with previous studies22,23. In contrast,
for the isotropically compressed system, the mean normal force is
distributed randomly around an average value (Fig. 4d).

A more quantitative characterization of the force chain structure
can be obtained by computing the 2D spatial correlation function of
the magnitude of the forces on the particles. Here, the idea is to
provide a well-defined quantitative measure to replace the rather
vaguely defined notion of a force chain. Force correlation functions,
in combination with force and angular distributions, provide an
additional tool for discriminating among competing theories.
Specifically, we computed kF(x) F(x þ r)l, where F(x) is the sum
of the magnitudes of the contact forces on a particle, x gives the
position vector of the point under consideration, and k…l implies an
average over x. Because we want to study the variation of this
correlation in different directions, we do not average over angles.
Thus, the correlation function gives spatial correlation between
forces separated by a distance r in different directions. Figure 4e
and f show the 2D correlation functions for the sheared system and
the isotropically compressed system, respectively. The inset in each
case shows a greyscale representation of the 2D correlation function.
For the sheared system, the 2D correlation image (Fig. 4e, inset)
reveals that the force correlations are much larger and of much longer
range in the direction of the long force chains. Figure 4e, which
depicts the variation of correlation function with distance in the

Figure 4 | Contact orientation, variation of the mean force and
spatial correlations for the sheared and the isotropically
compressed systems. The mean co-ordination numbers for the
sheared system and the isotropically compressed system are 3.1
and 3.7, respectively. The deformations for each type of loads are
the same as in Fig. 3. a, b, The distribution of contact angles of
contacts carrying forces larger than the mean, for the sheared and
the isotropically compressed system, respectively. c, d, The angular
variation of the mean normal force, normalized by the maximum
of the mean normal force (denoted only as kFnl for clarity), for the
sheared and the isotropically compressed system, respectively.
Starting from the centre of the image, the image is divided into 24
angular bins of 158 each and the average normal force in each bin is
plotted against the mean value of that bin. The angle (v) in radians
is measured with respect to the horizontal axis. The parameters of
the fit in c are a ¼ 0.563, b ¼ 0.727 and v0 ¼ 0.374. The parameter
a gives the mean force, b is a measure of anisotropy of the mean
force, and v0 gives the direction in which the mean force is
maximum. e, Spatial correlations for the sheared system in the
direction of force chains and perpendicular to it. f, Spatial
correlations for the isotropically compressed system in the same
two directions used for the sheared system. The insets of e and f
show the greyscale representations of the 2D correlations. The
darker regions correspond to low correlation values, and brighter
regions to high correlation values. The computations are
performed in Fourier space, as the image sizes are large
(1,600 £ 1,152). The plots are on a log–log scale with distance R
normalized by the average diameter D of the disks.
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direction of, and perpendicular to, the force chains, indicates that the
spatial correlations in the force chain direction persist for up to ,15
particle diameters, whereas in the perpendicular direction they fall to
background values within a couple of particle diameters. The
correlation range in the direction of force chains is comparable to
half the image size, which is 15 particle diameters in length. This
length is also the Nyquist cut-off frequency of the Fourier method for
computing the force correlation function in our computed images.
The above data suggest the interesting possibility that the spatial
force correlation may in fact be of a power-law type in the direction of
long force chains for large system sizes.

In complete contrast to sheared systems, the isotropically com-
pressed system has nearly uniform force correlation in all directions
(Fig. 4f, inset). This behaviour is confirmed by examining the spatial
correlation functions for the isotropically compressed system
(Fig. 4f). For ease of comparison, the correlations are shown for
the same two directions used for the sheared case. The correlation
functions drop to background values in both directions after two
particle diameters. Thus, no preferred direction is found in the
isotropically compressed system, whereas in the sheared system the
boundary stress creates an anisotropic stress state characterized by
long force chains aligned in a specific direction. Our results strongly
indicate that sheared systems exhibit not only geometric but also
mechanical anisotropy, and that force correlations serve as an
additional distinguishing signature characterizing stress-induced
anisotropy in granular systems. The rather long range of correlations
in the force chain direction is important for understanding the
approach to continuum behaviour.

The observations reported here open up a new regime of com-
parison between theoretical models and experiments. One of the
earliest computations of interparticle contact forces comes from
numerical experiments11, which are contact dynamics simulations
of rigid, frictional particles under biaxial shear. Although the bound-
ary conditions of the simulations and our experiments are not
identical, these simulations seem to be the closest match to our
experiments. As our current experimental resolution does not allow
us to measure very small forces, we restrict our comparison to forces
higher than the mean. In qualitative agreement with our data for the
sheared systems, the simulations obtain an exponential tail for forces
larger than the mean for the distributions of both the normal and the
tangential forces.

Two recent models, which study the force distributions in 2D
systems of frictionless particles under isotropic compression and
shear, are also relevant for the present data. A force ensemble
approach by Snoeijer et al.23 assumes equal a priori probability for
all force networks consistent with force balance constraints on each
particle. In this model, the distribution of the magnitude of the force,
P(f), has a peak around the mean force, a finite value at f ¼ 0, and a
tail decaying faster than an exponential for compressed systems. For
sheared systems, the model has an exponential regime for normal
forces up to three times larger than the mean (J. Snoeijer, personal
communication). A new lattice model24 considers triangular
lattices with force balance constraints on each node, which allows
isotropic and anisotropic force chain networks. The lattice
model prediction for the distribution of normal forces is an expo-
nential tail for the sheared systems and a faster than exponential
decay of the tail for compressed systems. The predictions of both
models for sheared and isotropically compressed systems are in
qualitative agreement with the present data. The absence of friction
in both these models precludes a comparison of the distributions of
tangential forces.

Looking towards the future, we are now in a position to address a
variety of important issues, such as the nature of the jamming
transition and the response function of a granular system. These
issues are vital for gaining a deeper understanding of the macroscopic
behaviour of granular systems from microscopic observations.
Future goals will be the extension of these studies to yet larger
systems and smaller forces.
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